An L1 element intronic insertion in the black-eyed white (Mitf[mi-bw]) gene: the loss of a single Mitf isoform responsible for the pigmentary defect and inner ear deafness.

نویسندگان

  • I Yajima
  • S Sato
  • T Kimura
  • K Yasumoto
  • S Shibahara
  • C R Goding
  • H Yamamoto
چکیده

Waardenburg syndrome type 2 (WS2) is an autosomal dominant disorder characterized by a combination of pigmentary and auditory abnormalities. Approximately 20% of WS2 cases are associated with mutations in the gene encoding microphthalmia-associated transcription factor (MITF). MITF plays a critical role in the development of both neural-crest-derived melanocytes and optic cup-derived retinal pigmented epithelium (RPE); the loss of a functional Mitf in mice results in complete absence of all pigment cells, which in turn induces microphthalmia and inner ear deafness. The black-eyed white Mitf mi-bw homozygous mouse normally has a pigmented RPE but lacks melanocytes essential for the pigmentation of the body and hearing. We show here that Mitf mi-bw is caused by an insertion into intron 3 of a 7.2 kb novel L1 element, L1bw, which belongs to an actively retrotransposing TF subfamily. The L1bw insertion reduces the amount of mRNAs for two Mitf isoforms, Mitf-A and Mitf-H, by affecting their overall expression levels and pre-mRNA splicing patterns, while it abolishes mRNA expression of another isoform, Mitf-M, which is specifically expressed in neural-crest-derived melanocytes. The consequence of the L1 insertion in the black-eyed white Mitf mi-bw mouse is that the developmental programme for RPE cells proceeds normally, most likely because of the presence of residual, full-length Mitf-A and Mitf-H proteins, whereas the lack of Mitf-M results in loss of the melanocyte population. The results suggest that melanocyte development depends critically on a single Mitf isoform, Mitf-M, and raise the possibility that specific mutations affecting MITF-M, the human equivalent of Mitf-M, may be responsible for a subset of WS2 conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes

Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf d...

متن کامل

Epistatic connections between microphthalmia-associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders.

Waardenburg syndrome (WS) is an inherited sensorineural deafness condition in humans caused by melanocyte deficiencies in the inner ear and forelock. Mutation of microphthalmia-associated transcription factor (MITF) is known to produce WS type IIA whereas mutations of either endothelin (EDN) or its receptor endothelin receptor B (EDNRB) produce WS type IV. However, a link between MITF haploinsu...

متن کامل

The value of MLPA in Waardenburg syndrome.

Waardenburg syndrome (WS) is an autosomal-dominant neurocristopathy characterized by sensorineural hearing loss, pigmentary abnormalities of the iris, hair, and skin, and is responsible for about 3% of congenital hearing loss. Point mutations in PAX3 have been identified in more than 90% of affected individuals with WS Type 1/WS Type 3. MITF point mutations have been identified in 10-15% of ind...

متن کامل

Investigating the Effects of Exposure to Continuous White Noise on SLC26A4 Gene Expression Levels in Male Rat Cochlea

Background and purpose: Irreversible damage to the inner ear is known as noise-induced hearing loss (NIHL). Exposure to excessive noise can affect the expression of genes in molecules involved in development of NIHL. SLC26A4 gene or PDS is responsible for causing both syndromic and non-syndromic deafness and is located at DFNB site. The aim of this study was to investigate the expression level ...

متن کامل

Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF.

Patients with Tietz syndrome have congenital profound deafness and generalised hypopigmentation, inherited in a fully penetrant autosomal dominant fashion. The pigmentary features and complete penetrance make this syndrome distinct among syndromes with pigmentary anomalies and deafness, which characteristically have patchy depigmentation and variable penetrance. Only one family has been reporte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 8 8  شماره 

صفحات  -

تاریخ انتشار 1999